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I INTRODUCTION

This is the final report for Nasa grant NAG 5-778 entitled “Error Control Coding for
Satellite and Space Communications”. In this report we describe in detail the new results
obtained since the last submitted report in March of 1987 but only briefly describe the
results obtained previously. The summary of previous results is given in section III in
terms of reports and preprints of submitted papers.

The overall research goals for this grant have been attained. In the latter part of the
research which started in January '87 when I took over from Professor Shu Lin, I have
mainly concentrated on problems encoutered in optical communication systems for satellite
and space communications. Here, some interesting results have been obtained. but more

research is needed in the future on the topic.



II. NEW RESULTS

This section contains a detailed description of the technical results obtained since the
last technical report was submitted to NASA on March 25. These results are reported
in the form of a paper which has recently been submitted for publication in the IEEE

transactions on communications.

to



SOME IMPLICATIONS OF TCM FOR OPTICAL
DIRECT-DETECTION CHANNELS *

Costas N. Georghiades
Electrical Engineering Department
Texas A&M University
College Station, Texas 77843

ABSTRACT

We consider the optical direct detection channel and show how simple trellis coded
modulation (TCM) can be used to improve performance or increase throughput (in bits
per second) without a bandwidth expansion and no performance loss. In fact, a modest
performance gain can be achieved. Although the approach can be used with other sig-
nal constellations, we concentrate on signals derived from the pulse-position modulation
(PPM) format by allowing overlap. Theoretical motivation for using this signal set, known
as overlapping PPM (OPPM). was recently given by Bar David et al who showed a capacity

gain when overlap is introduced.

* This researcihi\iivas supported by NASA grant No. NAG 5-778
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I. INTRODUCTION

Increasing system throughput (bits per second) in general involves either decreasing
the symbol duration or increasing the number of signals in the signal space. The first
approach results in an unavoidable increase in the required system bandwidth since the
same number of signal dimensions must fit in a smaller time interval. The second approach
may or may not result in a bandwidth expansion depending on whether the dimensionality
of the signal space is increased or not. In the latter case, the incurred penalty is an increase
in error-probability since signals are now closer together. Applying conventional coding to
improve performance will result in an increase in the required bandwidth which may not

be available.

In this paper, we apply the ideas introduced by Ungerboeck [1] in order to increase
throughput at no penalty in either bandwidth expansion or performance degradation.
Specifically, we are interested in doubling the throughput at no cost in bandwidth or
performance. The approach we follow is to introduce enough new signals in the signal
space to triple the number of bits per symbol, while keeping the dimensionality of the signal
space the same to avoid bandwidth expansion. We then sacrifice some of the throughput
gain using a trellis code over the expanded signal set in order to improve performance. We
do this for the optical direct-detection channel and consider both the background noise
case as well as the quantum-limited case where the only noise is the self-noise of the signal.
The direct-detection optical channel is well modeled by Poisson statistics, under which the
output of the channel is a Poisson process with intensity (A,(t) + A,). Here, A (1) is the
mean rate in photons per second due to the signal impinging on the photodetector and X,
is the noise intensity, due to background and/or detector dark currents; A, is zero for the

quantum-limited channel.

In the analysis that follows we consider overlapping pulse-position modulation (OPPM)
signals which, as the name implies. allow overlap between pulse positions, in contrast to
the usual orthogonal PPM. The motivation for using this signal format is given by Bar
David et al [2] who showed that the capacity of the optical channel increases compared

to orthogonal PPM when overlap is allowed. Moreover, it was noted in {2] that most of



the capacity gain can be achieved with a small overlap for low signal levels, as measured
by the average number of photons per slot. Another advantage of OPPM is that, like
PPM, it involves equal energy signals and has a low duty-cycle. The latter consideration
1s important due to the average power limit imposed on optical communication systems
by the laser and is one of the reasons PPM is preferred over on-off keying (OOK). A more

detailed description of OPPM is given in the following.

In section II we derive uncoded error-probability expressions for OPPM for both the
quantum-limited as well as the background noise case. Section I1I contains examples of how
TCM can be applied to the optical channel to increase throughput or improve performance

and analysis of the coded error-probability. Finally section IV contains some conclusions.

II. OVERLAPPING PPM
A. The Model

Under OPPM a symbol interval of T seconds is subdivided into QN subintervals of
equal duration 7 seconds. Information is conveyed by the position of a pulse of duration
T' = Nt seconds in one of the first J timest;, = (k—1)r, k =1,2,...,J; heret; = 01is

the start of a symbol interval. It is clear that J is related to @ and N by
J=NQ-1) + 1. (1)

As an example, figure 1 shows pictorially the J = 4 OPPM signals corresponding to Q@ = 2
and N = 3. Following the terminology in [2], we will refer to N as the indez of overlap.
Notice that @ is the alphabet size of the PPM signal set with no overlap (N = 1) and
that by allowing overlap between pulses we have increased the number of signals from @
to J. The bandwidth of the OPPM signal set can be easily seen to be the same as that
for Q-ary PPM since the signal pulse duration and the number of dimensions (Q) are the
same in both cases. On the other hand. however. the extended signal set is not orthogonal
anymore, which implies worse performance. Moreover. an increased burden is put on the
synchronization system which must now provide better time resolution. In the analysis
that follows we will assume that synchronization is either perfectly achieved or achieved

to such a degree that its effects on performance are negligible.

-
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As a demonstration of the throughput advantages of OPPM compared to orthogonal
PPM let us find the maximum throughput achieved by each when a bandwidth limit By is
imposed on a system. Measuring bandwidth by the reciprocal of the signal pulse duration,

it 1s easily found for PPM that the throughput r in nats per second is bounded by

9 Phngz) (2)

For OPPM we have

r < BLI“[N(QC;”“] < %Eln(zvﬂ). (3)

Equality on the right-most inequalities in (2) and (3) is achieved when @ = 2, which
implies that when throughput is a prime consideration, there is an advantage in limiting
the PPM alphabet size to @ = 2. A simple comparison between (2) and (3) shows the
throughput advantage of OPPM over PPM.

The uncoded error-probability performance of a Q = 4 OPPM system was previously
studied in [3] for a suboptimal receiver that implemented threshold detection to make
symbol decisions. The authors in [3] noted that the increased throughput was obtained at
a large cost in performance. In this paper we derive similar results for the performance of
optimal receivers and show with specific examples, using trellis coded modulation (TCM)
with simple codes, that performance loss can be avoided even when throughput is doubled
with no bandwidth increase. Before we proceed further, we note that our results are
not meant to compete with those reported by McEliece [4] and Massey [5] in terms of
error-probability. Such a comparison will be unfair since their coding schemes exploit an
appreciable bandwidth expansion in order to increase communication efficiency in bits per

photon.

B. Uncoded Error-Probability

Under the Poisson channel assumption. the sufficient statistic can be easily derived to
be the number of photons Ny, k = 1,2, ...,J. observed in each of the J subintervals corre-

sponding to pulse-positions. These counts are Poisson distributed with mean (A, + X\, )T’
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when a signal pulse is present and A, T’ otherwise. The receiver makes a decision by choos-
ing the symbol interval with the largest number of counts. In case of symbols with equal

counts, a random choice is made among those symbols.
We first concentrate on the quantum-limited case, A,, = 0. In this case it can be easily
seen that the sufficient statistic simplifies to the binary vector x = (z;.22,....,2n¢Q) where

(2)

0. otherwise;

{1, if n; > 0;
r; =

here, n,;, : = 1,2,---,NQ@, is the number of counts in the i-th 7-second subinterval dividing
T. With no background noise, the channel becomes an erasure channel (not binary) with

an erasure probability in each pulsed 7-second interval equal to
€ = exp(—A,7). (3)

. This means that Priz; = 0] equals € when a signal pulse is present in the : — th 7-second

subinterval and it equals one otherwise.

Leaving the details of the derivations for appendix A, the uncoded error-probability

can be shown to be

1.
P(t) = 1 - jk2P] -+ (J—Z)Pz} (4)
where
N -1 e+ N
Pr=(1-al+ Y =51+ F (5)
k=1
) N-1o ok eN eN
= - - 2 - e — €).
B (=t 4 (- 0R =9 Y -0 (6

Defining by u the number of signal photons per information nat, we have A, = uRIn(J)

photons per channel use (cu) where R is the number of information symbols per channel

symbol. Remembering that 7' = N7, we have for uncoded systems
H -
€ = exp(—¥ln(J)). (7)

A brief check indicates that equation (4) reduces to the right equation for the Q-ary PPM

case when N = 1.



When background noise is present, the following bound on error-probability is derived

in appendix B for uncoded systems.

I\Y

; N
1 ) 200, T [2i\.T" + pln(J 1
Pe) < jZa(z)Qﬂ\/ N ,\/ N —;a exp|—1i7] (8)

=1

~

where Q;( , ) is Marcum’s QQ function {91,

2T = ) i= 1,2, (N = 1),
a(d) = {(J _N)J - N + 1), i=N, (9)

and

_ L AT o) - VAT (10)

Notice that as A\, — 0, 4 — A,7 and (8) becomes a bound to the exact error-
probability in (4)-(6). Although the second sum on the right-hand side of (8) can be

summed analytically, we did not do so because it provides no further insight.

Figures (2) and (3) show for the quantum-limited case the symbol error-probability
as a function of signal energy p in photons/nat, the index of overlap N and the PPM
alphabet size ). Similar results for the background noise case with one noise photon per
slot, A\,T' = 1, are shown in figures (4) and (5). These results were obtained by using the
bound with the Q-function in equation (8) which is tighter than the Chernoff bound. It
was found that the Chernoff bound in (8) is about 0.5 dB away from the results presented

in figures 3 and 4.

The significant degradation in performance with increasing overlap N is obvious from
the figures. As an example, for quantum-limited channels with @ = 2 and an error-
probability of 107¢ there is about 1.8, 3.0, and 3.8 dB degradation in going from N =1 to
N =3, 5, and 7 respectively. The coresponding losses from overlap for Q@ = 4 are 2.8, 4.0,
and 5.1 dB respectively, indicating a higher loss with overlap as @ is increased. Similar
results for the background noise case are 1.2, 2.2 and 2.9 dB loss for @ = 2 and 1.7, 2.9 and
3.8 for Q = 4. These losses are significantly less than those reported in {3! for a suboptimal
receiver. The gain in allowing overlap is of course an increase in throughput by a factor

p = In(J)/In(Q) as compared to conventional Q-arv PPM. The index of overlap needed



to achieve a p-fold increase in throughputis N = (Q? — 1)/(Q — 1), which increases
exponentially with p. Also clear from figures 2-5 is the fact that increasing Q improves
performance for the same overlap N and signal level p. The price paid in this case is an
increased bandwidth since increasing @ increases the number of dimensions in the signal

space.

A comparison between the performance of the optimal receiver in figures 3 and 5 to
the performance of the suboptimal receiver studied in [3] for Q@ = 4 indicates that the
latter is significantly inferior, especially for large indexes of overlap N. For example, for
the quantum-limited channel and an error-probability of 10" the suboptimal receiver in
[3] is about 3 dB inferior for N = 3 and about 4.5 dB inferior for N = 4. Similarly, for
the background noise case the difference between the optimal and suboptimal receivers is

at least 3.5 dB for N = 4 and at least 4.1 dB for N = 5.

In the next section we will show how the use of trellis-coded modulation can result in

a doubling in throughput at no performance loss.

III. SOME IMPLICATIONS OF TCM

A. The Distance Metric

In presenting the results in this section we assume that the reader is familiar with
Ungerboeck’s work on trellis-coded modulation [1j. Tutorial versions of [1] that are easy

to follow can be found in {6 and [7].

The first step involved in applying the ideas of TCM to the optical channel is to identify
a distance metric that will be used for partitioning the OPPM signal set. To facilitate the
search for such a metric we will refer to the OPPM symbol with a pulse starting at time
t; = {j —1)7 as symbol j for j = 1,2.---.J. This definition is illustrated in figure 1 for
Q =2, N =3 and J = 4. What we are interested in obtaining is a function f(j,k) between
symbols j and k such that, given for example that j was sent, the probability of confusing
j for k is a monotonically non-increasing function of f(j,k), 7, ¥ = 1,2,.--,J. More
generally, we need to show that the probability of choosing a given incorrect path in the

trellis is a monotonically non-increasing function of the distance between the incorrect aud




correct paths. In the next few lines we first find a metric that satisfies our requirements

between symbols and then show that it is valid between paths as well.

A function satisfying our requirements between symbols can be easily identified by
recalling equation (7B) in appendix B which represents a Chernoff bound to the above

mentioned probability, i.e.,

6. R
PriN; < Ni/j] < exp[——]’v—k(v)\nT’+len(J) — VAT (11)

where

S . i< N
6]'1: — {!] k|’ if ’] k[_]\/, (12)

N, if [j — k> N.
We remind the reader that N; and N, are the number of counts observed in the j — th and
k — th symbol subintervals respectively. Notice that the probability of deciding k when
J was sent on the left-hand side of (11) is monotonically non-increasing with é;; which
satisfies our condition for a distance metric (notice also that é,; is indeed a metric). A
simple proof presented in appendix C shows that the above metric is valid also for paths

in the trellis as required above.

As a final point before proceeding, we note that é; can be used to partition the OPPM
signals in sets with increasing distance but it cannot be used to compare the performance
of OPPM systems with different index of overlap . A more proper distance measure in
this case is the whole exponent in equation (11). A simple study of this exponent shows
that it decreases monotonically with N although not quite in an inverse relation because
of the dependence of J on N. In the sequel we will use the above metric in set partitioning

and in deriving probability of error expressions when coding is used.

Having identified a metric, we are now ready to show how TCM can be used for the

optical channel to improve performance.

B. Improving Throughput

Let us consider the problem of doubling the throughput of a binary (Q = 2) PPM
system by allowing overlap. This can be accomplished at no bandwidth expansion with an

overlap N = 3 at the cost, however. of performance. Instead. we use an index of overlap
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N = 7 which results in tripling the throughput and then use a rate 2/3 trellis code on
the expanded signal set to trade-off some of the throughput gain for performance. As our
rate 2/3 code we use the simple four-state code described by Ungerboeck {6] whose trellis
diagram is repeated in figure 6 for convenience. In order to partition the signal set in
subsets with increasing distance, we use the distance metric é;; discussed above. Figure 7

shows the results of the set partitioning.

The minimum free distance of the code is easily seen to be between parallel transitions
with éfree = 4: the number of neighbors at this distance is one. Notice that although we
are using the same code as in [6], because of the different distance metric and the fact that
OPPM is not completely symmetric the minimum free distance may be achieved by some
path other than when phase-shift keying (PSK) is used with a Euclidean distance metric.

An example of this will be seen later in this section.

Approximating the error-probability by the error-event probability, we have for high

signal levels and the quantum limited channel

1 Rln(J) 1 81n(8)

P(e) = iexp[—éfree—N——p.] = -2—exp[- 51

p. (13)

Equation (13) expresses the fact that errors can be made only if no counts are detected in
the four slots of the signal interval that do not overlap with the other symbol in a parallel

transition. For uncoded binary PPM we have

P(e) = -exp|—In(2)y,. (14)

O =

Comparing (13) and (14) we observe a modest 0.6 dB gain with our simple coding scheme
obtained, however, at twice the throughput compared to binarv PPM. For the background
noise case with A, T' = 1 we have for the coded case and using the Chernoff bound in

(11) for comparison

- 5rce N T r 4 2
P(e) < exp|- L (VAT = RIn(Dp = VATP] = expl=z(4/1+ Z (@) ~ 1)’

and for uncoded binary PPM

Ple) < expl— (/AT +In(Q)p - \/)\,,T;)zf = exp{—(\/ﬁlw+ln(2)p - 1)}, (16)
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A brief comparison of equations (15) and (16) shows that even after doubling throughput
there is, at an error-probability of 107%, about a 1.0 dB advantage with the coded system
as compared to uncoded binary PPM. Asymptotically as ¢ — oo, (P(e) — 0) the
gain reduces to the same level as for the quantum-limited channel, as expected. Finally,
the bounds indicate that for any finite number of photons/nat, the gain increases with

increasing number of average noise counts.

Let us now consider the same problem of doubling the throughput using the eight-
state trellis code that was introduced in 1] for 8-PSK. The trellis for this code is repeated
in figure 8 which shows the path with the minimum distance from the all one path. Notice
that whereas for the PSK case [1] there are two paths at the same minimum (Euclidean)
distance, in our case there is only one and it is at éfee = 5 from the all one path. This
distance should be compared with the éf,.. = 4 distance for the 4-state code, a gain of

about 1 dB over the results reported above.

C. Improving Performance

If the objective is to improve performance without a bandwidth expansion, the exam-
ples that follow show that this can be accomplished with OPPM for the optical channel

using the same codes that Ungerboeck derived for the Gaussian channel.

Let us compare the performance of the coded system with N = 7, Q = 2, given by
(13), to an uncoded system with N = 3 and Q = 2. Both systems require the same
bandwidth and have the same throughput. Using equation (4) for a quantum-limited
system to compute the error-probability for the uncoded system, we see that the coded
quantum-limited system in (13) is about 2.5 dB superior at an error-probability of 107¢.
A similar comparison for systems with background noise using the Chernoff bounds in
equations (8) and (15) indicates a gain of about 2.2 dB with coded systems. This gain
approaches asymptotically for large signal levels the gain achieved by quantum-limited
systems. As a final example, it can be shown that about a 3.5 dB gain over uncoded
binary PPM can be achieved with the rate 2/3 code whose trellis is shown in figure 6. In

this case no parallel transitions are necessary.
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For the 8-state code of figure 8, about an extra 1 dB gain is achieved over uncoded

systems.

Before we end this section, we briefly describe the decoder for completeness.

D. Decoding of Coded OPPM

The sufficient statistic for symbol decisions for both the quantum-limited as well as
the background noise limited channels is, as noted earlier, the number of counts observed in
the J subintervals corresponding to possible pulse-positions. In the sequel we will denote a
sequence of L symbols transmitted by the encoder by a set of indexes { 5; }, ¢ =1,2,---,L
where j; € {1,2,---,J}. For sequence estimation, a maximum-likelihood (ML) decoder
maximizes over the set of all possible sequences allowwed by the encoder the following

statiztic
L

({i}) = D Ny (17)

i=1

Soft-decision decoding for the trellis codes discussed above is accomplished in two steps
when parallel transitions exist, as described by Ungerboeck: in the first step the symbol
with the largest number of counts is found among symbols in parallel transitions. Both the
symbol and its number of counts are retained. In the second step, the Viterbi algorithm
is used to find the best path in the trellis that maximizes (17), using as path metric the

accumulated number of counts for each path. Equal counts are resolved arbitrarily.

IV. CONCLUSIONS

The performance of both coded and uncoded overlapping PPM systems has been in-
vestigated for the optical direct-detection channel. To facilitate set partitioning, a simple
distance metric was derived which was shown to be valid for the optical channel. Using sim-
ple trellis codes over an expanded OPPM signal set, it was shown that both a throughput
and a performance gain can be achieved with simple codes and no bandwidth expansion.
The trellis-codes used where among those introduced by Ungerboeck and are optimal for
the Gaussian channel and a Euclidean distance metric. Although a performance gain was

obtained using these codes for the optical channel, it is not clear that they are optimal for

13



this channel and the distance metric derived herein.

o
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FIGURE CAPTIONS
An Example of OPPM with Q=2, N=3, J=4.

Uncoded Error-Probability for OPPM and Q=2 as a Function of Overlap and Pho-

tons/nat: Quantum-Limited Case.

Uncoded Error-Probability for OPPM and Q=4 as a Function of Overlap and Pho-

tons/nat: Quantum-Limited Case.

Uncoded Error-Probability for OPPM and Q=2 as a Function of Overlap and Pho-

tons/nat: Background Noise Case.

Uncoded Error-Probability for OPPM and Q=4 as a Function of Overlap and Pho-

tons/nat: Background Noise Case.
Trellis for the Four-State Code.
Set Partitioning of OPPM with Q=2, N=7, J=8.

Trellis for Eight-State Code.
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APPENDIX A

Derivation of Equations (4)-(6)

We first note that the probabilities of making a correct decision given that the first
or the J — th symbol was sent are the same. We call this probability Py. Similarly, the
probability of making a correct decision, call it P,, given that any of the other (J — 2)

symbols was sent is the same. Under these observations, equation (4) is evident.

Let us compute P; first. Assuming that symbol 1 was sent, only the slots 1,2,--. , N
may have non-zero counts. If slot 1 has nonzero counts, an event that happens with
probability (1 — ¢€), then a correct decision is made with probability one. If slot 1 is
erased and slot 2 has nonzero counts, which happens with probability ¢(1 — ¢), then
there is 1/2 probability of choosing the right symbol between the two candidates 1 and 2.
Similarly, if slots 1 and 2 are erased, and 3 is not, which occurs with probability e2(1 — ¢),
then there is 1/3 probability of making a correct choice. Applying this reasoning to other
slots and noting that if ell N slots are erased, then a random choice among the J symbols

1s made, we obtain equation (5).

To compute P, we use similar arguments as above.



APPENDIX B

Derivation of Equation (8)

The error probability is given by
17
P(e) = 3;%/]) (1B)

where P(e/j) is the probability of error given that symbol j was sent. Assuming pes-
simistically that in the case of equal symbol counts between the correct symbol and some

other symbol a wrong decision is made, we have

P(e) Ne}/i] < ) Pr{N; < Ni/j). (2B)

< Pr| U AN; <
J kj

< k£ <
The second inequality above is justified by the union bound. Focusing on the probabilities
on the right-hand side of (2B) we have after a little thought

PrIN; < Nu/jl = PriN'; < N'| (3B)

]

where N'; and N'j are independent Poisson random variables with means % (X, + A )T"

and %‘A,,T' respectively and

o
6jk:{u K, ] - k<N (45)

N, if |7 — k|>N.
Equations (3B) and (4B) can be easily derived by noting that between symbols j and &
there is an overlap of (N — |7 — k|) > 0 and that the symbols become orthogonal (no

overlap) when |3 — k| > N.

It follows from (3B) and (4B) that [8]

. o 22T 65k (266N + AT
PriNj < Nk/ii = Qily —x : Q\/ 2 ¥ ] (5B)
where
o® + 37 X3
Qife.8) = exp(=———) 3 () Tilad) (6B)



is Marcum’s Q-function [9]. A final simplification can be made by using a Chernoff bound

to the probability in (5B) to yield
Sk
Pr[N; < N¢] < exp[—TJVi(\/)\nT’ T — VANT. (7B)

Combining equations (1B), (2B), (5B) and (7B) we obtain

1 [26 0T (28 An + XTI
Ple) € 33 ) @iy = / i % ]
[ (9B)
1 8k
< jz exp[——zjv—k(\[()\n F 0T — VAT
J=1k#j

Equation (9B) can be simplified further by noting that &, € {1,2,---,N} when j # k.

Denoting by a(?) the number of times é;z = ¢, it can be shown that
N 22T = ), i=1,2,---,(N -1)
o) = {(J—N)(J~N+1), i=N. (10B)

Substituting (10B) in (9B) we obtain equation (8).
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APPENDIX C

Validation of the Distance Metric

Here we show that the distance metric é;; is valid also for paths and thus it is a valid

metric.

Consider a sequence of L symbols in the trellis corresponding to the transmitted
(correct) path. The decision statistic for this path is the sum, call it €;, of counts in each
of the symbol intervals in the path. If we describe the correct path by the sequence of

symbols (j1,72,+--.jr) where j; € {1,2,-.-,J}, we have

L
=) Nj;. (1C)

Now consider another path through the trellis other than the correct path described by

(ki.ky, -+, kp) with a decision statistic ¢;,
L
G=> Ny. (2)

The probability that an erroneous decision will be made between the above two paths is

‘Y

bounded from above by the probability that {; is less than or equal to {4, i.e

P(f) § P’I‘[ (A?]'i - :Vk'.) < 0} (3C)

M) =

=1
In general when the two symbols corresponding to counts NV;, and Ny, overlap, the Poisson

random variables N;, and Ny, are not independent. However, we can write
(‘Nji - Ni) = (X - X))

where X, and Xy, are independent Poisson random variables with means " L(An + X)T
85 . . . :
and 2\, T' respectively. Here &4, is the distance between symbols j; and k; as

defined in section III. The implications of the above arguments is that we can write

Ple) < PriXy < X; where Xy = SEOX and X; = _, X, are indepen-
! ! 2ai=1 Yot p
dent Poisson variables with means
T &
O I



and i
AT
N pRINY
i1=1

respectively.

Using the Chernoff bound to further bound P(e), we see that this probability is
monotonically non-increasing with the distance between the correct and the incorrect paths
given by Vf“:] 6jik;- Thus we have shown that the distance metric defined in section III.

)

is valid also between paths.
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SYMBOL

Figure 1. An Example of OPPM with Q=2, N=3, J=4.
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PROBABILITY OF SYMBOL ERROR P(e)
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Figure 2. Uncoded Error-Probability for OPPM and Q=2 as a
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Function of Overlap and Photons/nat: Quantum-Limited

Case.
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PROBABILITY OF SYMBOL ERROR P(e)
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Figure 3. Uncoded Error-Probability for OPPM and Q=4 as a Function
of Overlap and Photons/nat: Quantum-Limited Case.
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PROBABILITY OF SYMBOL ERROR P(e)
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Figure 5. Uncoded Error-Probability for OPPM and Q=2 as a Function
of Overlap and Photons/nat: Background Noise Case.
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Figure 6. Trellis for the Four-State Code.

27



Distance

~ N T
~
o0
~ ~r
[+ o]
~ I\/)
[+ o] ~r
L A
O
~r
- ~
~ N O
o0 ~ ~ ~

- Vo)
~ -

- o~
O N ~

- o~
vy N
< ~

- ~
o ~ ~—r

- ™~
N -

- 3/
- ~ ~ ~
~ r~ o

- ~r
(Ta)
o
- ~
— Ta}
o ~ hd
[Ta}
—
~ ~

7, J=8.

2, N=

Set Partitioning of OPPM with Q

Figure 7.

28



Figure 8. The Trellis for the Eight-State Code.
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HI. ABSTRACTS OF PREVIOUS REPORTS

In this section we include the abstracts of previous reports and papers that briefly
describe the derived results. Complete versions of these reports and preprints accompany

this final report.
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A CASCADED CODING SCHEME FOR ERROR CONTROL
AND ITS PERFORMANCE ANALYSIS *

Shu Lin Tadao Kasami, Tohru Fujiwara, Toyoo Takata
Texas A&M University Osaka University
College TX 77843 Toyonaka, Osaka, Japan
ABSTRACT

In this paper, we investigate a coding scheme for error control in data communication
systems. The scheme is obtained by cascading two error-correcting codes, called the inner
and outer codes. The error performance of the scheme is analyzed for a binary symmetric
channel with bit-error rate € < 1/2. We show that, if the inner and outer codes are chosen
properly. extremely high reliability can be attained even for a high channel bit-error rate.
Various specific example schemes with inner codes ranging from high rates to very low
rates and Reed-Solomon codes as outer codes are considered, and their error probabilities
are evaluated. They all provide extremely high reliability even for very high bit-error rates.
say 107! to 107%. Several example schemes are being considered by NASA for satellite

and spacecraft down-link error control.

™ This research was partially supported by NASA Grant No. NAG 5-778
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A CASCADED CODING SCHEME FOR ERROR CONTROL
AND ITS PERFORMANCE ANALYSIS®

Tadao Kasami, Tohru Fujiwara, Shu Lin
and Department of E.E.
Toyoo Takata Texas A&M University
Osaka University College Station, Texas 77843

Tovonaka. Osaka. Japan

ABSTRACT

In this paper, we investigate a coding scheme for error control in data communication
svstems. The scheme is obtained by cascading two error-correcting codes. called the inner
and outer codes. The error performance of the scheme is analyzed for a binary svmmetric
channel with bit-error rate € < 1/2. We show that. if the inner and outer codes are chosen
properly, extremely high reliability can be attained even for a high channel bit-error rate.
Several example schemes with Reed-Solomon codes as outer codes are considered, and their
error performance is evaluated. They all provide extremely high reliability. One particular
example scheme with a shortened triple-error-correcting BCH code as the inner code and
a Reed-Solomon code with symbols from GF(2°) as the outer code is being considered by

NASA for satellite or spacecraft down-link error control.

This paper was partially presented at the 8th Counference on Information Theory
and Its Applications. Nara, Japan, December 1985.

This research is supported by NASA Grants No. NAG 5-407 and NAG 5-778.

32



TWO HYBRID ARQ ERROR CONTROL SCHEMES
FOR NEAR EARTH SATELLITE COMMUNICATIONS *

Shu Lin Tadao Kasami
Department of E.E. Faculty of Engineering Science
Texas A & M University Osaka University
College Station, Texas 77843 Toyonaka, Osaka, Japan 560
ABSTRACT

In this report. two hybrid ARQ error control schemes are proposed for NASA near
earth satellite communications. Both schemes are adaptive in nature, and employ cascaded
codes to achieve both high reliability and throughput efficiency for high data rate file

transfer.

* This work was supported by NASA Grant No. NAG 5-778.
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ON THE SYNCHRONIZABILITY AND DETECTABILITY OF
RANDOM PPM SEQUENCES *

by

Costas N. Georghiades
Electrical Engineering Department
Texas A&M University
College Station, TX 77843

ABSTRACT

The problem of synchronization and detection of random pulse-position-modulation
(PPM) sequences is investigated under the assumption of perfect slot synchronization.
Maximum-likelihood PPM symbol synchronization and receiver algorithms are dgrived
that make decisions based both on soft as well as hard data: these algorithms are seen
to be easily implementable. We derive bounds on the symbol error probability as well
as the probability of false synchronization that indicate the existence of a rather severe
performance floor, which can easily be the limiting factor in the overall system performance.
The performance floor is inherent in the PPM format and random data and becomes more
serious as the PPM alphabet size Q is increased. A way to eliminate the performance floor

is suggested by inserting “special” PPM symbols in the random data stream.

~ * This work was éupported by NASA grant No. NAG 5-778
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